Jump to content
Sign in to follow this  
Sledgstone

10 times lighter but 500 times stronger than steel, 'buckypaper'

Recommended Posts

http://www.chicagotribune.com/technology/sns-ap-tec-buckypaper,0,4241742.story

TALLAHASSEE, Fla. (AP) _ It's called "buckypaper" and looks a lot like ordinary carbon paper, but don't be fooled by the cute name or flimsy appearance. It could revolutionize the way everything from airplanes to TVs are made.

Buckypaper is 10 times lighter but potentially 500 times stronger than steel when sheets of it are stacked and pressed together to form a composite. Unlike conventional composite materials, though, it conducts electricity like copper or silicon and disperses heat like steel or brass.

"All those things are what a lot of people in nanotechnology have been working toward as sort of Holy Grails," said Wade Adams, a scientist at Rice University.

That idea — that there is great future promise for buckypaper and other derivatives of the ultra-tiny cylinders known as carbon nanotubes — has been floated for years now. However, researchers at Florida State University say they have made important progress that may soon turn hype into reality.

Buckypaper is made from tube-shaped carbon molecules 50,000 times thinner than a human hair. Due to its unique properties, it is envisioned as a wondrous new material for light, energy-efficient aircraft and automobiles, more powerful computers, improved TV screens and many other products.

So far, buckypaper can be made at only a fraction of its potential strength, in small quantities and at a high price. The Florida State researchers are developing manufacturing techniques that soon may make it competitive with the best composite materials now available.

"If this thing goes into production, this very well could be a very, very game-changing or revolutionary technology to the aerospace business," said Les Kramer, chief technologist for Lockheed Martin Missiles and Fire Control, which is helping fund the Florida State research.

The scientific discovery that led to buckypaper virtually came from outer space.

In 1985, British scientist Harry Kroto joined researchers at Rice University for an experiment to create the same conditions that exist in a star. They wanted to find out how stars, the source of all carbon in the universe, make the element that is a main building block of life.

Everything went as planned with one exception.

"There was an extra character that turned up totally unexpected," recalled Kroto, now at Florida State heading a program that encourages the study of math, science and technology in public schools. "It was a discovery out of left field."

The surprise guest was a molecule with 60 carbon atoms shaped like a soccer ball. To Kroto, it also looked like the geodesic domes promoted by Buckminster Fuller, an architect, inventor and futurist. That inspired Kroto to name the new molecule buckminsterfullerene, or "buckyballs" for short.

For their discovery of the buckyball — the third form of pure carbon to be discovered after graphite and diamonds — Kroto and his Rice colleagues, Robert Curl Jr. and Richard E. Smalley, were awarded the Nobel Prize for chemistry in 1996.

Separately, Japanese physicist Sumio Iijima developed a tube-shaped variation while doing research at Arizona State University.

Researchers at Smalley's laboratory then inadvertently found that the tubes would stick together when disbursed in a liquid suspension and filtered through a fine mesh, producing a thin film — buckypaper.

The secret of its strength is the huge surface area of each nanotube, said Ben Wang, director of Florida State's High-Performance Materials Institute.

"If you take a gram of nanotubes, just one gram, and if you unfold every tube into a graphite sheet, you can cover about two-thirds of a football field," Wang said.

Carbon nanotubes are already beginning to be used to strengthen tennis rackets and bicycles, but in small amounts. The epoxy resins used in those applications are 1 to 5 percent carbon nanotubes, which are added in the form of a fine powder. Buckypaper, which is a thin film rather than a powder, has a much higher nanotube content — about 50 percent.

One challenge is that the tubes clump together at odd angles, limiting their strength in buckypaper. Wang and his fellow researchers found a solution: Exposing the tubes to high magnetism causes most of them to line up in the same direction, increasing their collective strength.

Another problem is the tubes are so perfectly smooth it's hard to hold them together with epoxy. Researchers are looking for ways to create some surface defects — but not too many — to improve bonding.

Click the link to see the rest of the article (on page 2) and to see a quick video.

Now planes and cars can be lighter, so they'll use less fuel, but also have improved strength and durability. And of course, the military applications are probably huge too.


gallery_1_23_1357354444_270.jpg

Share this post


Link to post
Share on other sites


http://www.chicagotribune.com/technology/sns-ap-tec-buckypaper,0,4241742.story

Click the link to see the rest of the article (on page 2) and to see a quick video.

Now planes and cars can be lighter, so they'll use less fuel, but also have improved strength and durability. And of course, the military applications are probably huge too.

Also bigger Hummers!... Meh... I doubt a chunk of greedy SOBs will really allow this to change tech as we know it.

Those who fight deplorables should see to it that they themselves do not become deplorables.

Share this post


Link to post
Share on other sites

would be teh cool though

with US car companies going under cuz all they hype is suv's maybe they can incorporate it into the auto industry along with fuel efficient or alternate power and save themselves *shrug*


                                               gallery_3_22_21209.jpg

                                               Look at the flowers

Share this post


Link to post
Share on other sites
Sign in to follow this  

×
×
  • Create New...